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Abstract. On the basis of a model that was proposed to explain a large isotope effect on
the temperature (T;) of the tramsition from a ferroelectric phase to a pamelectric phase in
KH;PQ4 D), the motion of electric dipole moments is examined in the framework of the
harmonic approximation; it is coneluded that, in the ferroelectric phase, there are electric dipole
waves, by which the vibration rmotion of a proton is induced along the direction of an oxygen—
hydrogen—oxygen (0—0) bond. Scattering of thermal neutrons induced by this motion of protans
{deuterons) is also examined.

1. Introduction

In our previous letter [1] we calculated the energies and wave functions of the ground
and excited states for a proton in XDP and a deuteron in KD;PO, (DKDP) by adopting an
empirical potential, under the assumption that a strong coupling exists between protons
(deuterons) and dipole moments induced by distortion of POy tetrahedra. On the basis
of these quantum-mechanical calculations for protors and deuterons, we proposed a new
model for the phase transition from a ferroelectric phase to a paraelectric phase. From
examinations of this model [1, 2], we found the following features: (1) the phase transition
is of an order-disorder type with a large isotope effect on the transition temperature; (2)
the isotope effect is due to changes of a potential shape for a proton induced by ordering
of the dipole moments, but not the tunnelling motion of protons; (3) distributions of the
dipole moments have a broad peak evern in the ferroelectric phase, and accordingly the
excitation energies for the proton motion in the direction along an O-0O bond have so wide
a distribution that observations of a peak corresponding to the excitation of this mode are
practically impossible [2]. These features seem to agree with those of observations for these
materials [3-6].

Most of the theoretical studies [7-10] concerning the mechanism of the ferroelectric
phase transition in KDP are based on the assumption introduced by Slater [11] and refined
by Takagi {12]: the static and dynamic properties of this system are described by the
configuration energy determined by proton configurations around a PO, tetrahedron. In
our model, however, such interactions between protons are not considered explicitly. The
correlation between protons appears as a result of the strong coupling between protons
and distortion of PO, tetrahedra. Since the Slater-Takagi model is widely accepted, it is
necessary to examine the reliability of our model in detail, although it gives a consistent
account of isotope effects on the transition temperature and the saturated dipole moment.
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In this paper, the motion of dipole moments in our model is examined in the framework
of the harmonic approximation to reveal dynamic properties of protons and dipole moments
in the ferroelectric phase. Qur plan is as follows. The main features of our model are
described in section 2. In section 3, it is shown that there are electric dipole waves with
dispersion, in the ferroelectric phase. On the basis of this result, quantization of the electric
dipole waves is performed. Scattering of thermal neutrons by the vibration motion of protons
induced by the electric dipole waves is examined in section 4. In section 5, some aspects
of our results are discussed, including a comparison with scattering functions of neutrons
obtained in section 4 and recent neutron-scattering experiments. The purpose of the present
paper is to show that it gives a consistent account of some properties of the ferroelectric
phase in KDP and DKDP, as specific evidence for the usefulness of our model.

2. Model

Let us consider a system comprising N distorted PO, tetrahedra and 2N protons, under
the assumption that (1) the distortion of tetrahedron i is proportional to its electric dipole
moment p;; (2) all dipele moments of the tetrahedra lie along the ¢ axis in a KDP (DKDP)
crystal; and (3) there is an interaction between a proton and dipole moments expressed as
K (pei 4 py)x, where p; and ; are dipole moments of two tetrahedra (i and j) connected by
the proton, x is a displacement of the proton in the direction along the OO bond, measured
from the centre of this bond, and X is a coupling constant.

Protons are expected to follow the motion of dipole moments because of the smaliness
of the proton mass. The adiabatic approximation that separates the motion of fast protons
from that of slow dipole moments should, therefore, be valid for a description of the present
system. In this approximation, the wave function of the system is written as

2N
WPy Tows By - ) = ({1 n ¥rn; (i) (1)
n=1

where y ({1;}) is the wave function of the dipole moments and y(r,; {x;}) is the ground-
state wave function of proton n.

The adiabatic potential of the system may be expressed as a function of N dipole
moments. We wrote it as [1, 2]

N
put= %; ,2+ Eﬂ'xﬂj EEU 2)

(!f) in

Here, the first term is the elastic energy due to a mechanical deformation of the tetrahedra;
the second term is the interaction energy between dipoles taking account of only the nearest-
neighhour interaction; the last term is the energy of 2N protons, where —Ef} is the ground-
state energy of a proton connecting two neighbouring tetrahedra (i and j).

Enowledge of —Eg, and ¥ (ry; {1;]) is obtained from quantum-mechanical calculations
for protons (deuterons) in KDP (DKDP). In the previous letter [1], we assumed that a potential
with double minima along the direction of an O—0 bond acts on a proton. In this case, the
interaction between the proton and dipole moments induces a drastic change of the potential
acting on the proton, Accordingly, the wave function and energy of the ground state for
the proton (deuteron) strongly depend on p; + u;. In fipure 1, profiles of the ground-state
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Figure 1. Schematic profiles of the potential and wave functions of a proton along the direction
of an O-0 bond (a) at p; 4 o = 2us, (b) at p; + iy = 0 and (€) at g, + py = —2p5.

wave function of the proton along the direction of the O-O bond are shown with those of
the potential acting on the proton, schematically.
We also found that the ground-state energy is expressed as

ED, = [+ 2K (u; + )12 — b ®)

with B = 0.110 eV, 4P = 0.058 eV (= 0.532") and 1K = 0.64"/ul, where 1™ and AP

are h in KDP and DKDP, respectively, and p! is a saturated dipole moment in KDP. We note

here that the isotope effect of I K is disregarded because of its smallness [2].
Furthermore, it was found from the behaviour of the system at T = 0 K that the relations

A+B= 2——3{-& )
VAT + QIK 1)
QIK)?
A> B X GIKpyI P ©}
and
(B + QIR 8 = (hP)? + QIK pPy 6)

hold [2]. Here, ,u,;D is (5 in DKDP.

By substituting the values of h", h® and 1 X into equation (6), 10 = 1.2u8 is obtained.
This value for uP is in good agreement with the observed value [13).

In the adiabatic approximation, the state of the system is described as the motion of a
system point on the adiabatic potential surface. Upon applying the classical approximation
to the motion of dipole moments, the motion of the system point is represented by a set of
the following equations:

dz Hi _ a Epol

—m— | = 1, vy N 7
= O ) )
where M is an effective mass with a dipole moment, We emphasize here that the motion
of protons in the ground state is completely determined by the motion of the system point,
under this approximation.
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3. Electric dipole waves in the ferroelectric phase

In the ferroelectric phase, it is expected that most dipole moments lie in the same direction
and deviations of these values from the saturated value p; are small. A force acting
on f;, —8Epe /3, may, therefore, be expressed as E] Sy using Apy = ) — Hs.
Upon applying this linear approximation, the equation of motion for the dipole moments is
rewritten to that of Auy, ie,

d>Ap;
M= =3 fdw ®
i

where fi; = fo for i = j; fi; = fi when i and j are neighbours; and f;; = 0 otherwise.
For fo and fi, the following expressions are obtained from equation (3):

oo A AU [ [ IKYy ] ©
VT QIkmy L P+ QIR p)?
and
f=B___UKP [1 __ @Iky ] (10
4 VREFQIKmP L B+ QK )

The parameters in our model are summarized in table 1, including A and B determined
50 as to reproduce the transition temperature T in KDP.

Table 1. Values of b, /K, A, B, fy and f] used in our calculations. Here, AP = 0.11 eV and
ul = 4.8 10722 pC cm. The transition temperatures, T, obtained using these values are also

denoted,
AR IRpB/RR AWBY R BYRR RPRIER AWRYES T (K)
KDP 1.0 0.6 Q.96 0.88 0.58 0.13 120
DKDP 0.53 0.6 0.96 0.88 0.86 0.19 310

3.1. Dipole waves

It is convenient to specify positions of dipole moments by a set of lattice vectors Ry that
locate each cell of the crystal. When we choose a unit cell as in figure 2, each cell contains
four POy tetrahedra, whose positions are specified by F; + ¢, (p =1,...,4). Using these
symbols, solutions of equation (8) can be represented as

i
Aptyp = ‘/ﬁ— > & (k) expl-iwt + k- Rp)] an
k

where w is a frequency, & a wave number vector and N /4 the number of unit cells in the
lattice,

Substituting them into equation (8), we obtain a set of linear homogeneous equations.
The condition with which these equations possess non-trivial solutions is

fo-Ma?  (L4eRa)fi 0 (4etilbetikey,
A+ehDfy  fo-Mo?  (1+e780)f, 0 =0 (12)
0 (I+e%) i  fo~ Mo? (1+e%9)f;

(1 + elfed)eikec 7, 0 (1 + e~ka) £ fo— Mo
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Figure 2. The projection of the unit ¢2ll used in the calculation on the a5 plane. There are
four POy tetrahedra (OJ) and eight protons (O} in the cell. For simplicity, it is assumed that afl
0-0 bonds are parallel to the a axis or the b axis. In the fipure, the heights of the centres of
POy tetrahedra are also denoted.

where a is a lattice constant of the « axis, %; is a wave number in the direction of the a
axis and so on.
From the condition, four eigenfrequencies are obtained:

2 k k 1 k
(ﬂ) -1 —2ﬁ‘/1 y Soskaatooskeb | [ 00SKeC ;L coskaa)(L + cosksb)

o fo 2 2
(13
2
k x
(wﬂo) —1- 23':—; 1428 "“;’“’Sk"b —\/1 + °2°s * (1 + coskga) (]l + cos kyb)
(14)
2
(wﬁo) =1+ 2{-}\/1 oy Soskaa ; cosksb _ \/1 +C;Sk°“ (1 + coskya)(1 + coskyb)
0
(15)
and
2
(Z;T:) —14 2-]}’1\/1 + cosk,a ;.-coskbb + ‘/1 +C;Sk°c(1 + coskya)(1 + cosksb)
0 .
(16)

where wy = +/fo/M is used.
When using values for fp and fi from table 1, we find that all frequencies (@), @2, w3

and w,) have real values in the Briliouin zone. This means that the stable electric dipole
waves with four branches exist in both KDP and DKDP.
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Figure 3. The density of states of the dipole waves (a) in kpp and (b) in DKDP.
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Figure 4. The dispersion relations of the dipole waves in bxop for wave vectors parallel to the
o axis, () w1(ka), (0) w2lke), {€) wilka), and (d) walks).

In figure 3, the density of states for the dipole waves is shown. As seen in this figure,
it has two peaks. These peak positions show an isotope effect: the peak positions in DKDP
are at frequencies about 1.2 times higher than those of KDP.

In order to clarify features of the dispersion of the dipole waves, as an example, the
dispersion relation in the direction of the & axis in DKDP is shown in figure 4.

3.2. Quantization of the dipole waves

In the framework of the linear approximation, the motion of dipole moments could be
regarded as for a set of harmonic oscillators. The quantization of the dipole waves may,
therefore, be processed exactly in the same manner as for photons and phonons.

When using boson operators, a:,r (k) and a, (k), called creation and annihilation operators,
respectively, the Hamiltonian of the dipole waves is
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4

H= Zthu(k)[aI (k)a (k) + 1] amn

v=1

and Apy,p is expressed as

- R\ 1 v ik Ry vk Sk 1
AM’LP - (W) vlzk m[gp(k)e av(k) + gp (k)e ay (k)] (18)

where g, (k) is an eigenvector for eigenfrequency w, (k) obtained from equation (12) and
g;*(k) is the complex conjugate of g, (k).
Note that there are the following relations:

4

> gurik)gy (k) = b,y (19)

p=1

Eg " (k)gh (k) = 8p,p (20)
and

gp(—k) = g, (k) 1)

for the eigenvectors and

(@, k), a} (k)] = 8,8k — &) (22)

(. k), ay ()] = [a] (&), a} (k)] = 0 23)

ay()Iny (k) = v/, (), (k) — 1) (24)
and

&l ) m (k) = V(&) + Timu () + 1) 25)

for the boson operators.
It is easy to calculate the thermal average of the square of fluctuations of dipoles, defined

by
(Apr = ﬁ( PILVILE p)z) 26)
p_

from equation (18) by using equations (19)-(25). Here the thermal average {...})r is given
by

Jr= ZP al. - 1x @7)

where P; is the probability distribution function for state i.
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The result obtained is as follows:

a _L nv(k)'i‘%
(Bl = 20 ;ij—wu(k) (28)
with
1

Hu(k) = _eﬁﬂlv(kJ/kaT — 1.

(29)

At T = 0 K, therefore, the magnitude of the quantum fluctations of dipole moments
is evaluated by

hoyp 1
Vdut)r = [ szum] (30)

where wg = /fo/M. To estimate /{Au?)r_y, knowledge of wyp is required. This value
will be estimated in section 5.

4. Scattering of thermal neutrons by the motion of protens due to the dipole waves

The scattering intensity of thermal nentrons by protons can be obtained from the scattering
function defined by

Sinc(@, @) = ) Miait,a(qw) (31)
Lo

for incoherent scattering and

Sean(@s @) = Y Y My oo (g, ) (32)

lo Fo

for coherent scattering, with

Moo (g @) = ) Py (ile™ ™| £Y(F1e977 |i)o[w + (E; — Ey)/R]. (33)
i f

Here |i} and | f}, respectively, are the initial and final states of the system; 7 , is a position
vector of a proton; and E; and Ey, respectively, are energies of the initial and final states.
Since we adopted here the unit cell shown in figure 2, each cell contains eight protons,
whose position vectors 1 o (& = 1,..., 8) are related to lattice vector Ry by

Tra = R, +3: + U o (34)

where 8, is a position vector of the centre of an O-0 bond measured from the origin of
unit cell /.

To evaluate the scattering function of neutrons, knowledge of a matrix element
{ile~1@'™a| £} is required. In the adiabatic approximation, the matrix element is expressed
as

{ile™0me| fy = e T EAI ) L0y} (35)
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with
Lo = f w;l:me-iq-u,_, Yo daul.a (36)

where |x;} (1x7}) is the initial (final) state of the dipole moments and ¥, , is the ground-state
wave function of proton (I, @).

A proton in the ferroelectric phase is localized in a single potential valley deepened
by the interaction between the proton and dipole moments (see figure i). By using
the coordinate axes shown in figure 5, therefore, the ground state wave function . is
approximated as

Via = VoV aVia (37)
with
174
mw mew,
Yy = ( n_;) exp [— > re — xfa)z] (38)
1/4
nir me
Yo = (—H—h’) exp [——ﬁlyﬁu] (39)
and
1/4
N, i,
b= () o222 @

where m is the proton mass, ), an angular frequency of the proton in the x direction, and
so on. We assumed here that the wave function has its maximum value at (xf‘"“, 0, 0).

z
y
0 atom 0 atom
1
~-d/2 d/2

Figure 5. The coordinate axes used for describing the wave function of a proton.

We can calculate [, , from equation (36} using this wave function. The result is as
follows:

La= o (/A H@ e ) o —~i(q 00 )20 o = (o fAman, Y@ U o~ (A, (g2 (41)

where &y, Yo and 2, are unit vectors defined by

Ul g = X oo + Yola + UaZe- 42)
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In our model, the wave function in the O-O direction, ¥f,, strongly depends on a sum
of dipole moments with two P04 tetrahedra connected by the proton, y; + u;, as described
in section 2. Both w, and x{,, therefore, depend on ju; + ps. Considering the smallness of
Ap; (= py — pg) in the ferroelectric phase, we assume these dependences as follows:

Xy =231+ dio) “3)
and

@z = @3(1 + Cdpa) (44)
using 4y, defined by

Ap; + Ap;

he=—"o,

(45)

where xJ and «), respectively, denote x, and @, at g; + p; = 245 and C is a constant.
The dependence of the excitation energies of a proton on ; + u; (see the previous letter
[1]) indicates that C is of the order of unity,

When using equations (42), (43), and (44}, 1; o is rewritten as

1) o = e~ Mg HOTIR g ity (46)
with
hg-xa) | Blg-y)? | B(g-2a)’
o= @)
me} 4mw, Amaw,
and
= 0 ; 2,.0
Wy = (g * T )k, (1 — (g - o )ya/x,) (48)
where y is defined by
e 49
vy= 4mala®’ (49)

For M) oy« (q, w) defined by equation (32), therefore, we obtain
Moy (@ ®) = Grape y_ P gju,-ie*i"’«df-« | X7}k €% | 38w + (Ey ~ Ey)/R]
i
(50)
with
Glogp o = & et la)g =i (By— Ry d-8a=80) o ~H@ %a )i~ T Ie]s] (51)

where w} is the complex conjugate of w,,.
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Table 2. Position vectors sy, unit vectors @, and the relation between €2 (k) and g_:,’(k). Here,
G2 (k) is expressed in units of [{an /2w, Yiwo/ N foluly P2,

o 8y Ty Cr(k)

1 (af4i 0! C/B) (1‘ 0» 0) g;’+g{

2 (3‘1/4’ 0, C/S) (1,0, 0) g;’eik"ﬂ + g‘z"

3 (a/4,b/2,5/8)  (1,0,0) gi+gl

4 (3a/4, b/2,5¢/8)  (1,0,0) gl + glelkd

5 (2/2, b4, 3c/8) ©,1,0 gi+g}

6 (2/2,3b/4,3¢/8) (0,1,0)  gielot gy

7 @54, 7c/8) 0,1,0)  gleifer 4 gt

8 (0,3b/4,7c/8) 0,1,00  pgleitbthel 4 gu

If we write changes of dipole moments with two POy tetrahedra connected by proton
(I, o) as Au{R,, p) and Au(R,, p"), from equation (18), d; , is expressed as

dra =3 ICE(RIESReay (k) + C2* (k)e ™ Fra”T (k)] 52)
vk

VoL h Ve galk (Ba—RD) 1 oV (Lo aik-(Rw—RD)
Gk =, / NN [gp(k)e + gy (k)e 1 (53)

Note that C} (k) is independent of ! since R, — Ry and Ry — Ry are determined only by o.
The relation between C; (k) and g is listed in table 2 with s, and x,, respectively, defined
by equations (34) and (42).

We note here that gya®/x0 ~ 0.1 for ga = =, since fiw? ~01eV,a ~175 A,
x% ~ 0.2 A, and C ~ 1 for KDP and DKDP. This means that, in KDP (DKDP), a dominant
contribution to the scattering function comes from a displacement of the proton position
induced by changes of dipole moments, and not a deformation of the shape of the proton
wave function described by w,. We, therefore, adopt the following approximation for wy
befow:

where

wy = (g- m,)xg. 54

Under this approximation, calculations of M, 4. (g, @) are processed in exactly the
same manner 2s for scattering of thermal neutrons by phonens [14]. The result is as follows:

MI,a;!‘,a'(Q7 w) = Gl,a;!’.a'e_zw”r [8(w) + Vi g1 o] (55)
where
Wow = § 3 [W2ICER) + Wi |CL (k) Pl 2nu (k) + 1] (56)
kv
and

Vit = Walter 3 _[CHRICY (R)eFRB(n, (k) + 1)6(0 — wy)
kv

+ C¥*(k)CE (k)e* BBl (BYS (0 + w,)]. (57
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The term with §(w) comes from the elastic scattering and the other terms describe scattering
with emission or absorption of a single energy quantum of the dipole waves.
By taking the sum over lattice vectors, we have the following expressions:

Sine(@,0) = Y, Gogpae el Y ICLR)PI(u(k) + D0 — @) + my (k)80 + )]
o kv

(58)
for the incoherent inelastic scattering and
Secn(@, @) = Y Y Gogowe e wowy Y CHACH (@)
o v
x [(rnu(@) + Dé{e — o) + ny(@)d(w + w,)] (59)

for the coherent inelastic scattering.

We emphasize here that the scattering functions are proportional to w,w, for inelastic
scattering processes with absorption or emission of a single energy quantum of the dipole
waves. This means that these processes make no contribution to the inelastic scattering
functions with scattering vector, g, parallel to the ¢ axis, when all O-O bonds are
perpendicular to the ¢ axis.

5. Discussion

We found that there are electric dipole waves with dispersion in both Kbp and DKDP, by
which the motion of protons is induced, as a result of the strong coupling between protons
and dipole moments. Furthermore, it was concluded that this motion of protons is detected
by experiments of inelastic neutron scattering using scattering vector, g, perpendicular to
the ¢ axis. Thus it is necessary to examine in detail the scattering functions obtained and
to make a comparison between them and experimental results to judge the reliability of
the present result. Since inelastic scattering processes with loss of energy by a neutron to
a crystal are observed under ordinary experimental circumstances, we will discuss below
scattering with emission of a single energy quantum of the dipole waves.

For simplicity, we consider here scattering of thermal neutrons for g parallel to the a
axis. In this case, the scattering function for the incoherent scattering is as follows:

Sinc(q, @) = gAYV Y ICLR Iy + 1130 — w,) (60)
kv
with
U = 2 /4me + A%y [CE (k) [2ny + 1] (61)
kv

where ¢ = |g| and A(= |x2|) is 0.18 A for KpP and 0.22 A for DKDP, respectively. Here, we
used the fact that both 3 , |C2(k)|*[2n, + 1] and Y, , ICL(K)P[n, + 1)6(w ~ w,) do not
depend on «. For the incoherent inelastic scattering, using some fixed value of g, therefore,
the w dependence of the scattering intensity is determined by 3, , 1Cy (K)Pny+118{w—w,).

In figure 6, these values at T = 0 and T = 0.4hwp/ kg are shown for KDP. As seen
in this figure, profiles of the scattering function have a dip at wyg like the density of states
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Figure 6. The w dependence of the scattering function for the incoherent scattering in Xpp. The
results at 7 = 0 and at T = Q.4fewo/ ks are shown by solid and broken lines, respectively. Note
here that 0.4fewo/ ks ~ 110 K, if we assume fewo = 25 meV (see section 5).

for the dipole waves. Note that the height of the peak at w = 1.2ayp increases little with
increasing temperature.

The temperature dependence of equation (60) also appears from that of U. This gives
rise to the decrease of the scattering intensity with increasing temperature.

It is important to recognize here that the temperature dependence of the incoherent
inelastic scattering function is not determined by only the Bose distribution function n,,
in equation (60). One of the other factors that determine the temperature dependence is
the population of protons in the ground state. The population decreases with increasing
temperature, due to the excitation of protons to excited states. This effect decreases the
scattering intensity with increasing temperature.

Another factor is that the linear approximation adopted here is inadequate at high
temperatures. Especially at temperatures near or above T, deviations of dipole moments
from pt; become large and a considerable number of dipoles flip to the opposite direction.
This means that the lifetime of a dipole wave becomes short and the transfer of a proton
{deuteron} between two sites occurs frequently.

These two factors give rise to a decrease of the height and a broadening of the peaks of
the scattering function with increasing temperatures. At sufficiently high temperatures above
T... especially, the peaks should disappear. We emphasize here that the peaks disappear when
g is parallel to the ¢ axis.

In an experiment on the incoherent inelastic scattering for KDP performed by Shibata and
Ikeda [6], a single peak has been observed at 28 meV, in addition to peaks corresponding
to the excitation of protons to excited states. They found that the peak at 28 meV has the
following features: (1) the peak intensity becomes small graduvally when the temperature
increases and vanishes at high temperatures above T, and (2) there is no observation of
this peak for g parallel to the ¢ axis. These properties agree well with those of the peak
at @ = 1.2wy. Accordingly, it is reasonable to consider that the observed peak at 28 meV
corresponds 1o the peak at fiw = 1.2%wy. If it does, we may take hiwg ~ 25 meV.

From the value for fwq and equation (30}, quantum fluctuations of dipcle moments may
be estimated: +/{Au2) = 0.46uM for KDP and /(Au?) = 0.35u for DKDP. These values
indicate that both KDP and DKDP are systems with large quantum fluctvations of dipole
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moments. Thus we conclude that the broadening of the distribution of the excitation energy
for the motion of protons along the O—O bond direction is considerable even at T =0 K,
as predicted in our previous paper [2].

Next we will discuss the coherent scattering. For g paralle]l to the ¢ axis, using U
defined by equation (61), the coherent inelastic scattering function is written as

4 4 4
Scon(q> @) = g%~V Z x0x0, e = )giglsi=7p) z Co(@)Cyr (@)2n,+ 108 (w—wwy).
1

a=l o'=1 v=1

(62)

This function depends on the configuration of protons (deuterons) strongly, We calcutated
the incoherent scattering function numerically for two periodic configurations of protons
(deuterons) shown in table 3. From these calculations, we found that only S.(g, @1(g)}
has a significant scattering intensity for configuration a, whereas for configuration b, only
Seoh(g. @2(g)} is non-vanishing.

Table 3. Configurations of deuterons considered in the text, a and b. We assumed that a
displacement of a deuteron measured from the centre of the O-O bond, xg, is A, —A, or 0.
Here, A is 0.18 A for koP and 0.22 A for DKDP.

2 a b

x? A A
2 -A  -aA
B -A A
x5 A —A
x5° A 0
xg —-A 1}
x,g -A o
x3 A Q

Configuration a satisfies the ice rule, in which all POy tetrahedra have two protons
(deuterons) on their nearest-neighbour positions. At T = 0 K, this configuration should be
reatized in both KDP and DKDP, because of the symmetry of the crystal. On the other hand, at
temperatures near T, configuration b is also expected to be realized in some local regions,
since the number of dipoles that flip to the opposite direction increases with increasing
temperature. This means that, at least, both of the dispersion relations, w;(g) and as(q),
are observed in coherent inelastic scattering experiments at high temperatures near T,

Recently, for DKDP, Todate et al [15] performed experiments on the coherent inelastic
scattering in ferrcelectric phases at temperatures near 7. In these experiments, they
observed a dispersion relation with a minimum energy of ~ 10 meV at the I' point and a
maximum energy of ~ 20 meV at the zone boundary. This dispersion relation is similar
to one obtained for configuration a in our calculations when Awy = 25 meV is used. They
also observed another dispersion relation with a minimum energy of ~ 25 meV at the I’
point and a maximum energy of ~ 30 meV at the zone boundary. The feature of this
dispersion refation is also similar to one for configuration b. In spite of such agreement,
at present, it is not clear whether or not the observed dispersion relations are those of the
dipole waves obtained here. In order to confirm our inference, more detailed studies are
required, including experiments at low temperatures.
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Finally, we make remarks as to the validity of the present calculation. In our
calculations, only the nearest-neighbour interaction for the direct interaction between dipole
moments is taken into account, for simplicity. This approximation seems to be inadequate
for calculations of some quantities. For cxample, the density of states of the dipole
waves decomposes to four peaks, when the dipole interaction with next-nearest neighbours
cannot be disregarded. Thus we must admit that there is a possibility that the peak
structure obtained here is incorrect. It is, therefore, necessary to perform more detailed
calculations including the long-range part of the direct interaction between dipole moments
to obtain qualitative agreement with the structure of peaks measured by inelastic scattering
experiments. Nevertheless, we believe that the present calculation is enough to conclude
the existence of the dipole waves in KDP and DKDP and to confirm the reliability of our
model because many of the properties discussed here are expected to be unchanged by the
long-range interaction.

6. Conclusion

We showed that our model, proposed to explain the ferroelectric phase transition in KDP,
predicts that stable dipole waves exist in a ferroelectric phase and quantum fluctuations of
the dipole moments are considerable. We also found that the motion of protons induced
by the dipole waves makes an important contribution to the neutron scattering. From the
comparison of the scattering functions obtained here with experiments on inelastic neutron
scattering, we conclude that our model gives a consistent account of properties of the
ferroelectric phase in KDP and DKDP. This conclusion is regarded as specific evidence that
our model is useful to describe the physics of KDP crystals.
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